
Package: criticalpath (via r-universe)
September 17, 2024

Title An Implementation of the Critical Path Method

Version 0.2.1.000

Author Rubens Jose Rosa [aut, cre], Marcos dos Santos [aut], Thiago
Marques [aut]

Maintainer Rubens Jose Rosa <rubens@rubensjoserosa.com>

URL https://rubensjoserosa.com/criticalpath,

https://github.com/rubens2005/criticalpath

BugReports https://github.com/rubens2005/criticalpath/issues

Description An R implementation of the Critical Path Method (CPM). CPM
is a method used to estimate the minimum project duration and
determine the amount of scheduling flexibility on the logical
network paths within the schedule model. The flexibility is in
terms of early start, early finish, late start, late finish,
total float and free float. Beside, it permits to quantify the
complexity of network diagram through the analysis of
topological indicators. Finally, it permits to change the
activities duration to perform what-if scenario analysis. The
package was built based on following references: To make
topological sorting and other graph operation, we use Csardi,
G. & Nepusz, T. (2005)
<https://www.researchgate.net/publication/221995787_The_Igraph_Software_
Package_for_Complex_Network_Research>;
For schedule concept, the reference was Project Management
Institute (2017)
<https://www.pmi.org/pmbok-guide-standards/foundational/pmbok>;
For standards terms, we use Project Management Institute (2017)
<https://www.pmi.org/pmbok-guide-standards/lexicon>; For
algorithms on Critical Path Method development, we use
Vanhoucke, M. (2013) <doi:10.1007/978-3-642-40438-2> and
Vanhoucke, M. (2014) <doi:10.1007/978-3-319-04331-9>; And,
finally, for topological definitions, we use Vanhoucke, M.
(2009) <doi:10.1007/978-1-4419-1014-1>.

License MIT + file LICENSE

1

https://rubensjoserosa.com/criticalpath
https://github.com/rubens2005/criticalpath
https://github.com/rubens2005/criticalpath/issues
https://www.researchgate.net/publication/221995787_The_Igraph_Software_Package_for_Complex_Network_Research
https://www.researchgate.net/publication/221995787_The_Igraph_Software_Package_for_Complex_Network_Research
https://www.pmi.org/pmbok-guide-standards/foundational/pmbok
https://www.pmi.org/pmbok-guide-standards/lexicon
https://doi.org/10.1007/978-3-642-40438-2
https://doi.org/10.1007/978-3-319-04331-9
https://doi.org/10.1007/978-1-4419-1014-1

2 Contents

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Imports dplyr, igraph, magrittr, R6, stringr, tibble

Suggests DiagrammeR, knitr, rmarkdown, testthat

Collate 'Schedule.R' 'utils-pipe.R' 'criticalpath.R'
'cpt_calculate_critical_path.R' 'cpt_schedule_status.R'
'cpt_topological_organization.R' 'cpt_utils.R' 'sch_activity.R'
'sch_relation.R' 'sch_schedule.R'
'sch_topological_indicators.R'

VignetteBuilder knitr

Repository https://rubens2005.r-universe.dev

RemoteUrl https://github.com/rubens2005/criticalpath

RemoteRef HEAD

RemoteSha e565d30e5d4cd21ebcb1d57d214385f494bd82ac

Contents
criticalpath . 3
Schedule . 5
sch_activities . 13
sch_add_activities . 15
sch_add_activities_tibble . 17
sch_add_activity . 17
sch_add_relation . 19
sch_add_relations . 20
sch_add_relations_tibble . 22
sch_all_predecessors . 23
sch_all_successors . 24
sch_change_activities_duration . 25
sch_critical_activities . 26
sch_critical_relations . 27
sch_duration . 29
sch_evaluate_redundancy . 30
sch_gantt_matrix . 31
sch_get_activity . 32
sch_has_any_activity . 33
sch_has_any_relation . 34
sch_is_redundant . 35
sch_new . 36
sch_non_critical_activities . 36
sch_non_critical_relations . 37
sch_nr_activities . 39

criticalpath 3

sch_nr_relations . 40
sch_plan . 41
sch_predecessors . 42
sch_reference . 43
sch_relations . 44
sch_successors . 45
sch_title . 47
sch_topoi_ad . 48
sch_topoi_la . 49
sch_topoi_sp . 50
sch_topoi_tf . 51
sch_validate . 52
sch_xy_gantt_matrix . 53

Index 55

criticalpath criticalpath: Critical Path Method R Implementation

Description

criticalpath package is an R implementation of the Critical Path Method (CPM). CPM is a
method used to estimate the minimum project duration and determine the amount of scheduling
flexibility on the logical network paths within the schedule model. The flexibility is in terms of
early start, early finish, late start, late finish, total float and free float. Beside, it permits to quantify
the complexity of network diagram through the analysis of topological indicators. Finally, it permits
to change the activities duration to perform what-if scenario analysis.

Details

With this package, you can calculate the following CPM parameters:

• Schedule duration

• Early start and finish date of each activity

• Late start and finish date of each activity

• Critical activities

• Critical path

• Total float and free float

• Gantt Matrix

• What-if scenario analysis

• Topological indicators

Author(s)

Rubens Jose Rosa (<rubens@rubensjoserosa.com>), Marcos dos Santos (<marcosdossantos@ime.eb.br>),
Thiago Marques (<profestathimarques@gmail.com>)

4 criticalpath

References

Csardi, G. & Nepusz, T. (2005). The Igraph Software Package for Complex Network Research.
InterJournal. Complex Systems. 1695.

Project Management Institute (2017) A Guide to the Project Management Body of Knowledge
(PMBOK Guide). Sixth Edition.

Project Management Institute (2017) PMI Lexicon of Project Management Terms: Version 3.2.

Vanhoucke, M. (2009) Measuring Time: Improving Project Performance Using Earned Value
Management. Springer-Verlag US.

Vanhoucke, M. (2013) Project Management with Dynamic Scheduling: Baseline Scheduling,
Risk Analysis and Project Control. Springer-Verlag Berlin Heidelberg.

Vanhoucke, M. (2014) Integrated Project Management and Control: First Comes the Theory,
then the Practice. Springer International Publishing Switzerland.

See Also

On vignette package there are more information with examples about:

• How to create a schedule:

– Create a new schedule without any information.

* sch_new()

– Add activities and relations together to an schedule.

* sch_add_activities()

* sch_add_relations()

– Add activities to a schedule.

* sch_add_activity()

– Add relations to a schedule.

* sch_add_relation()

• How to get schedule information:

– Title

* sch_title()

– Reference

* sch_reference()

– Duration

* sch_duration()

• How to get activities properties:

– Activity Properties.

* sch_activities()

* sch_get_activity()

– Gantt Matrix.

* sch_gantt_matrix()

* sch_xy_gantt_matrix()

• How to change activities duration:

Schedule 5

– Change Activities Duration.

* sch_change_activities_duration()

• How to get relations properties:

– Relation Properties

* sch_relations()

– Successors and Predecessors.

* sch_all_successors()

* sch_successors()

* sch_all_predecessors()

* sch_predecessors()

• How to get topological properties:

– Topological Indicators.

* sch_topoi_sp()

* sch_topoi_ad()

* sch_topoi_la()

* sch_topoi_tf()

Schedule R6 Class Representing a Schedule

Description

This class is a representation of Precedence Diagramming Method (PDM). PDM is a technique used
for constructing a schedule model in which activities are represented by nodes and are graphically
linked by one or more logical relationships to show the sequence in which the activities are to be
performed.

A schedule has activities and relations data-frames. With this class, it is possible to apply critical
path method

Active bindings

title A project title for identification. It depends on user of the class. Its use are:

• Sechedule$title <- "A title"

– sets a title for a project.
• Sechedule$title

– gets the title of the project.

reference A reference from project origin, for example, a book, a paper, a corporation, or nothing.
Its uses are:

• Sechedule$reference <- "A reference"

– sets a reference for a project.
• Sechedule$title

– gets the reference of the project.

6 Schedule

has_any_activity A logical value that indicates if the schedule has any activity. A TRUE value
means that the schedule has some activity; a FALSE, means that the schedule is empty.

• Usage: Schedule$has_any_activity

nr_activities Number of activities in a schedule as an integer value.

• Usage: Schedule$nr_activities

activities Return a data frame with all activities of a schedule in an activity id order. This is the
main information calculated by CPM. The data frame is formed by following structure:

• id: Activity id.
• name: The name of activity.
• duration: A number that represents the activity’s duration.
• milestone: A milestone is an activity with zero duration. This property indicates if an

activity is a milestone or not: TRUE indicates it is a milestone; FALSE indicates it is not.
• critical: A critical activity is one with total float minor or equal to zero. This property

indicates if an activity is critical: TRUE indicates it is critical; FALSE indicates it is not
critical.

• ES: Early Start: is the earliest start period an activity can begin after its predecessors
without violating precedence relation.

• EF: Early Finish: is the early start plus activity duration.
• LS: Late Start: is the late finish minus activity duration.
• LF: Late Finish: is the latest finish an activity can finish before their successors without

violating precedence relation.
• total_float: It is the amount of period an activity can be delayed without violating the

project duration. Its formula is: LS - ES or LF - EF.
• free_float: It is the amount of period an activity can be delayed without violating the start

time of the successors activities.
• progr_level: Progressive level is the rank of activities counted from begin. The level of

the activities that don’t have predecessor is one; the level of the other activities, is one
plus the maximal level of their predecessor.

• regr_level: Regressive level is the rank of activities counted from the end. The level of
the activities that don’t have successor is the maximal progressive level; the level of the
other activities, is one minus the minimal level of their successor.

• topo_float: It is the difference between progressive level and regressive level.
• Usage: Schedule$activities

has_any_relation A logical value that indicates if the schedule has any relation. A TRUE value
means that the schedule has some relation; a FALSE, means that the schedule does not have
any relation.

• Usage: Schedule$has_any_relation

nr_relations Number of relations in a schedule as an integer value.

• Usage: Schedule$nr_relations

relations Return a data frame with all relations of a schedule in topological order. This is the
main information calculated by CPM. The data frame is formed by following structure:

• from: Predecessor activity id from a relation.
• to: Successor activity id from a relation.

Schedule 7

• type: The type of relation between activities. Its value may be: FS, FF, SS, SF.
• lag: The time period between activity predecessor and activity successor activity
• critical: A critical relation formed by two activity critical: predecessor and successor.
TRUE indicates it is critical; FALSE indicates it is not critical.

• ord: Indicates de order that the relation was added in the schedule.
• i_from: It is the index of predecessor activity in the activities data frame.
• i_to: It is the index of successor activity in the activities data frame.
• Usage: Schedule$relations

duration An integer value that indicates the duration of a schedule.

Methods

Public methods:
• Schedule$new()

• Schedule$add_activity()

• Schedule$add_activities()

• Schedule$get_activity()

• Schedule$add_relation()

• Schedule$add_relations()

• Schedule$add_act_rel()

• Schedule$print()

• Schedule$all_successors()

• Schedule$all_predecessors()

• Schedule$is_redundant()

• Schedule$change_durations()

• Schedule$gantt_matrix()

• Schedule$xy_gantt_matrix()

• Schedule$topoi_sp()

• Schedule$topoi_ad()

• Schedule$topoi_la()

• Schedule$topoi_tf()

• Schedule$clone()

Method new(): Make a schedule with activities and relations between activities. The method
Schedule$new(activities, relations) creates an schedule object from two data frames, one
containing activities lists and the other the precedence relations between activities. After creation,
it is applied the Critical Path Method (CPM).
It is possible to create a empty schedule, without any activity or relation with the constructor
Schedule$new(). After that, it is possible to add activity with add_activity and relation with
add_relation methods.

Usage:
Schedule$new(activities = NULL, relations = NULL)

Arguments:

8 Schedule

activities Data frame with activities. If it is not informed, the schedule will be created
without any activity. Its structure is:
• id: Activity id. It is an integer number that must be unique within a schedule.
• name: Activity name. It may be empty.
• duration: Activity duration. It is integer number without unit time. It may be zero.

relations Data frame with precedence relations between activities. If it is informed, the ac-
tivities has to be informed too. If it is not informed, the schedule will be created without
any relation. It is formed by predecessor activity e successor activity. Its structure is:
• from: The id of predecessor activity. Must exist an activity with from id.
• to: The id of successor activity. Must exist an activity with to id.
• type: Specifies the type of relation between activities. The default type is FS and its

value may be: FS, FF, SS, SF, that means:
– FS: Finish-Start relation. Activity to_id can only start after the finish of activity

from_id.
– FF: Finish-Finish relation. Activity to_id must finish together with activity from_id.
– SS: Start-Start relation. Activity to_id must start together with activity from_id.
– SF: Start-Finish relation. Activity to_id must finish when activity from_id starts.

• lag: The time period between activities that the successor activity must be advanced, or
lated, after activity from_id. It must be an integer, less than, equal or greater than zero.

Returns: A Schedule object with CPM parameters calculated.

Method add_activity(): Add an activity to a schedule.

Usage:
Schedule$add_activity(id, name = "", duration = 0L)

Arguments:
id Activity id that will be used to make relation between activities. It must be unique.
name The name of activity. The default is an empty string.
duration A number that represents the activity’s duration. It must be equal or greater than

zero. The default value is zero.

Returns: A Schedule object with an activity added and the critical path calculated.

Method add_activities(): Add activities from a data frame to a schedule.

Usage:
Schedule$add_activities(activities)

Arguments:
activities A data frame with the activities to be added.

Returns: A Schedule object with activities added and CPM calculated.

Method get_activity(): Gets an activity by id. It returns a data frame with one line about
activity.

Usage:
Schedule$get_activity(id)

Arguments:

Schedule 9

id An activity id as defined by the user.

Returns: A data frame with one line with the activity, or an error if activity id doesn’t exist.

Method add_relation(): Add a relation to a schedule.

Usage:
Schedule$add_relation(from, to, type = "FS", lag = 0L)

Arguments:
from The id of predecessor activity. Must exist an activity with from.
to The id of successor activity. Must exist an activity with to.
type Specifies the type of relation between activities. The default type is FS and its value may

be: FS, FF, SS, SF, that means: If type is not defined, it is assumed to be FS.
FS: Finish-Start relation. Activity ’to’ id can only start after the finish of activity ’from’ id.
FF: Finish-Finish relation. Activity ’to’ id must finish together with activity ’from’ id.
SS: Start-Start relation. Activity ’to’ id must start together with activity ’from’ id.
SF: Start-Finish relation. Activity ’to’ id must finish when activity ’from’ id starts.

lag The time period between activities that the successor activity ’to’ must be advanced after
activity ’from’ has been finished. The value may be negative, in such case, the activity ’to’
will be anticipated ’lag’ time periods. It must be an integer, less than, equal or greater than
zero. If lag is not defined, it is assumed to be zero.

Returns: A Schedule object with CPM parameters calculated.

Method add_relations(): Add relations between activities from a data frame to a schedule.

Usage:
Schedule$add_relations(relations)

Arguments:
relations A data frame with the relations to be added.

Returns: A Schedule object with relations added and CPM calculated.

Method add_act_rel(): Add an activity and her relations to a schedule.

Usage:
Schedule$add_act_rel(
id,
name,
duration,
relations_id = c(),
direction = "succ"

)

Arguments:
id Activity id. The id will be used to make relation between activities.
name The name of activity.
duration A number that represents the activity’s duration. It must be equal or greater than

zero.
relations_id A vector of ids such that will be linked with activity id. It may be relations of

successor or predecessors.

10 Schedule

direction Direction of relations_id: It may be "succ" or "pred". If dir="succ" the relations_id
will be the successor of the activity. If dir="pred" the relations_id will be the predecessor
of the activity.

Returns: A Schedule object.

Method print(): Print a description of the class

Usage:
Schedule$print(...)

Arguments:

... Variable parameters

Returns: A String .

Method all_successors(): List all successors from an activity: direct and indirect successors.

Usage:
Schedule$all_successors(id, ign_to = NULL)

Arguments:

id Activity id to be listed.
ign_to A relation to be ignored: id -> ign_to. Activities from this relation will be ignored.

Returns: A vector whith all activities ids.

Method all_predecessors(): List all predecessors from an activity: direct or indirect prede-
cessors.

Usage:
Schedule$all_predecessors(id, ign_from = NULL)

Arguments:

id Activity id to be listed.
ign_from A relation to be ignored: ign_from -> id. Activities from this relation will be ignored.

Returns: A vector with all activities ids.

Method is_redundant(): Verify if a relation between two activities is redundant. A relation
A->C is redundant if there are A->C, A->B, B->C relations.

Usage:
Schedule$is_redundant(id_from, id_to)

Arguments:

id_from From activity id.
id_to To activity id.

Returns: A logical TRUE if an arc is redundant; FALSE if it is not.

Method change_durations(): Change activities duration and calculate critical path. This way
is faster than creating a new schedule with new durations.

Usage:
Schedule$change_durations(new_durations)

Schedule 11

Arguments:

new_durations A vector with new activities’ duration.

Returns: A Schedule object.

Method gantt_matrix(): Create a matrix that represents a Gantt chart, a matrix where "1"
indicates that an activity is planned to be in execution.
In this matrix, the rows represent activities, whereas the columns represents the activity execution
period. So, the number of columns is equal to project duration.

Usage:
Schedule$gantt_matrix()

Returns: A matrix where "1" indicates that an activity is in execution.

Method xy_gantt_matrix(): Transform a Gantt matrix in x, y coordinates and the weight one.
Each point greater than zero in a Gantt matrix becomes a x, y coordinate.

Usage:
Schedule$xy_gantt_matrix(gantt = NULL)

Arguments:

gantt A Gantt Matrix. If it is not informed, it will use gantt_matrix() before this function.

Returns: A matrix x, y and weight.

Method topoi_sp(): SP Serial or Parallel Topological Indicator: It shows the closeness of
a network to a serial or parallel graph. As the network becomes serial, the SP increase, until one,
when the network totally serial.

Usage:
Schedule$topoi_sp()

Returns: A number between 0 and 1, inclusive.

Method topoi_ad(): AD Activity Distribution Topological Indicator: Measures the distri-
bution of the activities over the levels. If AD is approximately equal zero, each level has same
numbers of activities. Otherwise, if AD is equal one, the quantity of each level is not uniformly
distributed.

Usage:
Schedule$topoi_ad()

Returns: A number between 0 and 1, inclusive.

Method topoi_la(): LA Length of Arcs Topological Indicator: Measures the presence of
long arcs based on the difference between the progressive level of the end activity and the start
node of each relation. If LA is approximately equal zero, the progressive level between activities
is as far as possible. Otherwise, if LA is equal one, the relation distance are one.

Usage:
Schedule$topoi_la()

Returns: A number between 0 and 1, inclusive.

12 Schedule

Method topoi_tf(): TF Topological Float Indicator: Measures the topological float of each
activity. If TF = 0, there is no float between activities. If TF = 1, there is float between activities
and they be shift without affecting other activities.

Usage:
Schedule$topoi_tf()

Returns: A number between 0 and 1, inclusive.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Schedule$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Rubens Jose Rosa (<rubens@rubensjoserosa.com>), Marcos dos Santos (<marcosdossantos@ime.eb.br>),
Thiago Marques (<profestathimarques@gmail.com>)

References

Csardi, G. & Nepusz, T. (2005). The Igraph Software Package for Complex Network Research.
InterJournal. Complex Systems. 1695.

Project Management Institute (2017) A Guide to the Project Management Body of Knowledge
(PMBOK Guide). Sixth Edition.

Project Management Institute (2017) PMI Lexicon of Project Management Terms: Version 3.2.

Vanhoucke, M. (2009) Measuring Time: Improving Project Performance Using Earned Value
Management. Springer-Verlag US.

Vanhoucke, M. (2013) Project Management with Dynamic Scheduling: Baseline Scheduling,
Risk Analysis and Project Control. Springer-Verlag Berlin Heidelberg.

Vanhoucke, M. (2014) Integrated Project Management and Control: First Comes the Theory,
then the Practice. Springer International Publishing Switzerland.

See Also

On vignette package there is more information with examples about:

• Critical Path Method Package criticalpath.

• How to create a schedule:

– Add activities and relations together to an schedule.
– Add activities to a schedule.
– Add relations to a schedule.
– Create a schedule object from data frames.

• How to get schedule information:

– Title, Reference and Schedule Duration.

sch_activities 13

• How to get activities properties:

– Activity Properties.
– Gantt Matrix.

• How to change activities duration:

– Change Activities Duration.

• How to get relations properties:

– Relation Properties
– Successors and Predecessors.

• How to get topological properties:

– Topological Indicators.

sch_activities Activities

Description

Return a tibble with all activities of a schedule in an insertion order. These are the main information
calculated by CPM.

Usage

sch_activities(sch)

Arguments

sch A schedule object.

Details

The tibble is formed by following structure:

• id: Activity id.

• name: The name of activity.

• duration: A number that represents the activity’s duration.

• milestone: A milestone is an activity with zero duration. This property indicates if an activity
is a milestone or not: TRUE indicates it is a milestone; FALSE indicates it is not.

• critical: A critical activity is one with total float minor or equal to zero. This property indi-
cates if an activity is critical: TRUE indicates it is critical; FALSE indicates it is not critical.

• early_start: Is the earliest start period an activity can begin after its predecessors without
violating precedence relation.

• early_finish: Is the early start plus activity duration.

• late_start: Is the late finish minus activity duration.

14 sch_activities

• late_finish: Is the latest finish an activity can finish before their successors without violating
precedence relation.

• total_float: It is the amount of period an activity can be delayed without violating the project
duration. Its formula is: late_start - early_start or late_finish - early_finish

• free_float: It is the amount of period an activity can be delayed without violating the start
time of the successors activities.

• progr_level: It is the rank of activities counted from begin. The level of the activities that
don’t have predecessor is one; the level of the other activities, is one plus the maximal level of
their predecessor.

• regr_level: Regressive level is the rank of activities counted from the end. The level of the
activities that don’t have successor is the maximal progressive level; the level of the other
activities, is one minus the minimal level of their successor.

• topo_float: It is the difference between progressive level and regressive level.

Value

A tibble with activities.

See Also

sch_has_any_activity(), sch_change_activities_duration(), sch_add_activity(), sch_nr_activities(),
sch_critical_activities(), sch_add_activities(), sch_get_activity(), sch_duration().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(1L, "a1" , 0L, 2,3,4) %>%
sch_add_activity(2L, "a2" , 4L, 5) %>%
sch_add_activity(3L, "a3" , 9L, 10) %>%
sch_add_activity(4L, "a4" , 1L, 6) %>%
sch_add_activity(5L, "a5" , 4L, 9) %>%
sch_add_activity(6L, "a6" , 5L, 7) %>%
sch_add_activity(7L, "a7" , 1L, 8,11) %>%
sch_add_activity(8L, "a8" , 7L, 12) %>%
sch_add_activity(9L, "a9" , 8L, 12) %>%
sch_add_activity(10L, "a10", 3L, 12) %>%
sch_add_activity(11L, "a11", 3L, 12) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_activities(sch)

sch_add_activities 15

sch_add_activities Add Activities

Description

Combine several vectors for activities and their attributes into a tibble, which can be combined
with other similarly-generated tibbles, resulting in unique tibble to be added in a schedule. If the
schedule already contain some activities, the new activities will be added in the end.

Usage

sch_add_activities(sch, id, name, duration, ...)

Arguments

sch A schedule object.

id Activity id that will be used to make relation between activities. It must be
unique.

name The name of activity.

duration A number that represents the activity’s duration. It must be equal or greater than
zero.

... One or more vectors for associated activity attributes.

Details

A activity tibble, or atb, has at least the following columns:

• id (of type integer): Activity id. It is an integer number that must be unique within a
schedule.

• name (of type character): Activity name. It may be empty string.

• duration (of type integer): Activity duration. It is integer number without unit time. It may
be zero.

An arbitrary number of additional columns containing data attributes can be part of the atb, so long
as they follow the aforementioned columns.

Value

A schedule with a activity tibble (atb) added.

See Also

sch_reference(), sch_add_relations(), sch_add_activity(), sch_title(), sch_nr_activities(),
sch_new(), sch_plan(), sch_get_activity(), sch_has_any_activity(), sch_change_activities_duration().

16 sch_add_activities

Examples

Example #1
sch <- sch_new() %>%

sch_add_activities(
id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L)

) %>%
sch_plan()

sch_duration(sch)
sch_activities(sch)

Example #2
sch <- sch_new() %>%

sch_add_activities(
id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L),
resource = "Rubens",
cost = 123.45

) %>%
sch_plan()

sch_duration(sch)
atb <- sch_activities(sch)
atb$resource
atb$cost

Example #3
sch <- sch_new() %>%

sch_add_activities(
id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L),
resource = c(

"Rubens", "Jose", "Rosa", "Rodrigues", "Silva",
"Rubens", "Jose", "Rosa", "Rodrigues", "Silva",
"Rubens", "Jose", "Rosa", "Rodrigues", "Silva",
"Rubens", "Jose"),

cost = c(
123.45, 234.56, 345.56, 456.78, 567.89,
123.45, 234.56, 345.56, 456.78, 567.89,
123.45, 234.56, 345.56, 456.78, 567.89,
123.45, 234.56)

) %>%
sch_plan()

sch_duration(sch)
atb <- sch_activities(sch)
atb$resource
atb$cost

sch_add_activities_tibble 17

sch_add_activities_tibble

Add Activities Tibble

Description

Add activities tibble to a schedule.

Usage

sch_add_activities_tibble(sch, atb)

Arguments

sch A schedule object.

atb A tibble with activities definitions.

Value

A schedule with a activity tibble (atb) added.

Examples

atb <- tibble::tibble(
id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L)

)
sch <- sch_new() %>%

sch_add_activities_tibble(atb) %>%
sch_plan()

sch_duration(sch) #4
sch_activities(sch)

sch_add_activity Add Activity

Description

Add an activity and her relations to a schedule. The relations are optional. They will be included if
a set of activity id is informed, after activity duration.

Usage

sch_add_activity(sch, id, name, duration, ..., direction = "succ")

18 sch_add_activity

Arguments

sch A schedule object.

id Activity id that will be used to make relation between activities. It must be
unique.

name The name of activity.

duration A number that represents the activity’s duration. It must be equal or greater than
zero.

... A set of activity id relation such that will be linked with activity id. It may be
relations of successor or predecessors.

direction Direction of relations: It may be "succ" or "pred".

• succ: The relations_id will be the successor of the activity.
• pred: The relations_id will be the predecessor of the activity.

Value

A Schedule object with an activity added to it. If relations id is present, it will be included to the
schedule.

See Also

sch_change_activities_duration(), sch_has_any_activity(), sch_new(), sch_add_activities(),
sch_get_activity(), sch_plan(), sch_nr_activities(), sch_add_relation().

Examples

Example #1: Only with activities
sch <- sch_new() %>%

sch_add_activity(1L, "Task 1", 5L) %>%
sch_add_activity(2L, "Task 2", 6L) %>%
sch_add_activity(3L, "Task 3", 8L) %>%
sch_add_activity(4L, "Task 4", 6L) %>%
sch_add_activity(5L, "Task 5", 9L) %>%
sch_add_activity(6L, "Task 6", 3L) %>%
sch_add_activity(7L, "Task 7", 4L) %>%
sch_plan()

sch_duration(sch)
sch_activities(sch)

Example #2: With activities and relations.
sch <- sch_new() %>%

sch_add_activity(1L, "Task 1", 5L, 2L, 3L) %>%
sch_add_activity(2L, "Task 2", 6L, 4L) %>%
sch_add_activity(3L, "Task 3", 8L, 5L) %>%
sch_add_activity(4L, "Task 4", 6L, 6L) %>%
sch_add_activity(5L, "Task 5", 9L, 6L) %>%
sch_add_activity(6L, "Task 6", 3L, 7L) %>%
sch_add_activity(7L, "Task 7", 4L) %>%
sch_plan()

sch_duration(sch)

sch_add_relation 19

sch_activities(sch)
sch_relations(sch)

sch_add_relation Add Relation

Description

Add a relation to a schedule.

Usage

sch_add_relation(sch, from, to, type = "FS", lag = 0L)

Arguments

sch A schedule object.

from The id of predecessor activity. Must exist an activity with from.

to The id of successor activity. Must exist an activity with to.

type Specifies the type of relation between activities. The default type is FS and its
value may be: FS, FF, SS, SF, that means:

• FS: Finish-Start relation. Activity ’to’ id can only start after the finish of
activity ’from’ id.

• FF: Finish-Finish relation. Activity ’to’ id must finish together with activity
’from’ id.

• SS: Start-Start relation. Activity ’to’ id must start together with activity
’from’ id.

• SF: Start-Finish relation. Activity ’to’ id must finish when activity ’from’
id starts.

If type is not defined, it is assumed to be FS.

lag The time period between activities that the successor activity ’to’ must be ad-
vanced after activity ’from’ has been finished. The value may be negative, in
such case, the activity ’to’ will be anticipated ’lag’ time periods. It must be an
integer, less than, equal or greater than zero. If lag is not defined, it is assumed
to be zero.

Value

A Schedule object with a relation added.

See Also

sch_has_any_relation(), sch_nr_relations(), sch_add_relations(), sch_plan(), sch_validate(),
sch_add_activities(), sch_new().

20 sch_add_relations

Examples

sch <- sch_new() %>%
sch_title("Project 3: Old Carriage House Renovation") %>%
sch_reference(
"VANHOUCKE, Mario. Integrated project management and control:

first comes the theory, then the practice. Gent: Springer, 2014, p. 11") %>%
sch_add_activity(1L, "a1" , 2L) %>%
sch_add_activity(2L, "a2" , 2L) %>%
sch_add_activity(3L, "a3" , 4L) %>%
sch_add_activity(4L, "a4" , 3L) %>%
sch_add_activity(5L, "a5" , 4L) %>%
sch_add_activity(6L, "a6" , 1L) %>%
sch_add_activity(7L, "a7" , 1L) %>%
sch_add_activity(8L, "a8" , 1L) %>%
sch_add_activity(9L, "a9" , 1L) %>%
sch_add_activity(10L, "a10", 1L) %>%
sch_add_activity(11L, "a11", 3L) %>%
sch_add_activity(12L, "a12", 2L) %>%
sch_add_activity(13L, "a13", 1L) %>%
sch_add_activity(14L, "a14", 1L) %>%
sch_add_activity(15L, "a15", 2L) %>%
sch_add_activity(16L, "a16", 1L) %>%
sch_add_activity(17L, "a17", 1L) %>%
sch_add_relation(1L, 2L) %>%
sch_add_relation(2L, 3L) %>%
sch_add_relation(3L, 4L) %>%
sch_add_relation(4L, 5L) %>%
sch_add_relation(5L, 6L) %>%
sch_add_relation(6L, 7L) %>%
sch_add_relation(6L, 8L) %>%
sch_add_relation(6L, 9L) %>%
sch_add_relation(7L, 10L) %>%
sch_add_relation(8L, 10L) %>%
sch_add_relation(9L, 10L) %>%
sch_add_relation(10L, 11L) %>%
sch_add_relation(10L, 13L) %>%
sch_add_relation(11L, 12L) %>%
sch_add_relation(12L, 15L) %>%
sch_add_relation(13L, 14L) %>%
sch_add_relation(14L, 15L) %>%
sch_add_relation(15L, 16L) %>%
sch_add_relation(16L, 17L) %>%
sch_plan()

sch_duration(sch)
sch_activities(sch)
sch_relations(sch)

sch_add_relations Add Relations

sch_add_relations 21

Description

Combine several vectors for relation and their attributes into a tibble and add relations between
activities to a schedule.

Usage

sch_add_relations(sch, from, to, type = "FS", lag = 0L, ...)

Arguments

sch A schedule object.
from The id of predecessor activity.
to The id of successor activity.
type Specifies the relation type between activities. The default type is FS and its

value may be: FS, FF, SS, SF.
lag The time period between activities that the successor activity to must be ad-

vanced after activity from has been finished.
... One or more vectors for associated relation attributes.

Details

An relation tibble, or rtb, has at least the following columns:

• from (of type integer): The id of predecessor activity. Must exist an activity with from id.
• to (of type integer): The id of successor activity. Must exist an activity with to id.
• type (of type character) Specifies the relation type between activities. The default type is

FS and its value may be: FS, FF, SS, SF, that means:
– FS: Finish-Start relation. Activity ’to’ id can only start after the finish of activity ’from’

id.
– FF: Finish-Finish relation. Activity ’to’ id must finish together with activity ’from’ id.
– SS: Start-Start relation. Activity ’to’ id must start together with activity ’from’ id.
– SF: Start-Finish relation. Activity ’to’ id must finish when activity ’from’ id starts.

• lag (of type integer): The time period between activities that the successor activity to must
be advanced after activity from has been finished. The value may be negative, in such case,
the activity ’to’ will be anticipated ’lag’ time periods. It must be an integer, less than, equal or
greater than zero. If lag is not defined, it is assumed to be zero.

An arbitrary number of additional columns containing data attributes can be part of the rtb, so long
as they follow the aforementioned columns.

Value

A schedule with a relation tibble (rtb) added.

See Also

sch_title(), sch_reference(), sch_add_relation(), sch_nr_relations(), sch_has_any_relation(),
sch_new(), sch_plan(), sch_add_activities(), sch_validate().

22 sch_add_relations_tibble

Examples

sch <- sch_new() %>%
sch_title("Project 1: Cost Information System") %>%
sch_reference(
"VANHOUCKE, Mario. Integrated project management and control:
first comes the theory, then the practice.Gent: Springer, 2014, p. 6"

) %>%
sch_add_activities(

id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L)

) %>%
sch_plan()

sch_has_any_relation(sch) # FALSE
sch_nr_relations(sch) # 0
sch_duration(sch) # 4

sch %<>%
sch_add_relations(

from = c(1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 11L, 12L, 12L, 13L, 13L, 14L, 14L, 15L, 15L),

to = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 11L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 16L, 17L, 16L, 17L)

) %>%
sch_plan()

sch_has_any_relation(sch) # TRUE
sch_nr_relations(sch) # 26
sch_duration(sch) # 11

sch_add_relations_tibble

Add Relations Tibble

Description

Add relations tibble to a schedule.

Usage

sch_add_relations_tibble(sch, rtb)

Arguments

sch A schedule object.
rtb A tibble or data frame with relations definitions.

Value

A Schedule object with a relation added.

sch_all_predecessors 23

Examples

atb <- tibble::tibble(
id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L)

)
rtb <- data.frame(

from = c(1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 11L, 12L, 12L, 13L, 13L, 14L, 14L, 15L, 15L),

to = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 11L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 16L, 17L, 16L, 17L)

)
sch <- sch_new() %>%

sch_add_activities_tibble(atb) %>%
sch_add_relations_tibble(rtb) %>%
sch_plan()

sch_duration(sch) # 11

sch_all_predecessors All Predecessors

Description

List all predecessors from an activity: direct or indirect predecessors.

Usage

sch_all_predecessors(sch, id, ign_from = NULL)

Arguments

sch A schedule object.

id Activity id to be listed.

ign_from A relation to be ignored: ign_from -> id. Activities from this relation will be
ignored.

Value

A vector with all activities ids.

See Also

sch_successors(), sch_relations(), sch_is_redundant(), sch_all_successors(), sch_activities(),
sch_non_critical_activities(), sch_predecessors().

24 sch_all_successors

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(2L, "a2" , 4L, 5L, 12L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_all_predecessors(sch, 2) # nothing
sch_all_predecessors(sch, 7) # 6, 4
sch_all_predecessors(sch, 10) # 3

sch_all_successors All Successors

Description

List all successors from an activity: direct and indirect successors.

Usage

sch_all_successors(sch, id, ign_to = NULL)

Arguments

sch A schedule object.

id Activity id to be listed.

ign_to A relation to be ignored: id -> ign_to. Activities from this relation will be
ignored.

Value

A vector with all activities ids.

See Also

sch_predecessors(), sch_activities(), sch_non_critical_activities(), sch_successors(),
sch_relations(), sch_is_redundant(), sch_all_predecessors().

sch_change_activities_duration 25

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(2L, "a2" , 4L, 5L, 12L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_all_successors(sch, 2) # 5, 9, 12
sch_all_successors(sch, 7) # 8, 11, 12
sch_all_successors(sch, 10) # 12

sch_change_activities_duration

Change Activities Duration

Description

Change activities duration and calculates critical path. This way is faster than creating a new sched-
ule with new durations. The order of duration is the insertion order of activities.

Usage

sch_change_activities_duration(sch, new_durations)

Arguments

sch A schedule object.
new_durations A vector with new activities’ duration.

Value

A schedule object with new durations.

See Also

sch_activities(), sch_has_any_activity(), sch_duration(), sch_nr_activities(), sch_add_activity(),
sch_add_activities(), sch_get_activity().

26 sch_critical_activities

Examples

sch <- sch_new() %>%
sch_title("Project 2: Patient Transport System") %>%
sch_reference(
"VANHOUCKE, Mario. Integrated project management and control:

first comes the theory, then the practice. Gent: Springer, 2014, p. 9") %>%
sch_add_activities(

id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,1L,3L,2L, 2L,2L,2L,1L, 4L,5L,3L,3L, 4L,5L,1L,5L,2L)

) %>%
sch_add_relations(

from = c(1L, 2L, 3L, 3L, 4L, 5L, 6L, 7L, 8L, 8L, 8L,
8L, 8L, 9L, 10L, 11L, 12L, 13L, 13L, 14L, 14L, 15L, 15L),

to = c(2L, 3L, 4L, 6L, 5L, 8L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 14L, 14L, 14L, 14L, 15L, 16L, 17L, 16L, 17L)

) %>%
sch_plan()

Project duration
sch_duration(sch) # 25
Activities duration
atb <- sch_activities(sch)
atb$duration

Now, change activities duration
new_durations <- c(1L,2L,5L, 4L,3L, 2L,1L, 5L, 3L,5L,5L,3L,4L, 2L,1L, 2L,4L)
sch %<>%

sch_change_activities_duration(new_durations)

#Project duration
sch_duration(sch) # 31
Activities duration
atb <- sch_activities(sch)
atb$duration

sch_critical_activities

Critical Activities

Description

Return a tibble with all critical activities of a schedule in an insertion order.

Usage

sch_critical_activities(sch)

sch_critical_relations 27

Arguments

sch A schedule object.

Value

A tibble with critical activities.

See Also

sch_get_activity(), sch_add_activities(), sch_activities(), sch_add_activity(), sch_nr_activities(),
sch_non_critical_activities(), sch_has_any_activity().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(1L, "a1" , 0L, 2,3,4) %>%
sch_add_activity(2L, "a2" , 4L, 5) %>%
sch_add_activity(3L, "a3" , 9L, 10) %>%
sch_add_activity(4L, "a4" , 1L, 6) %>%
sch_add_activity(5L, "a5" , 4L, 9) %>%
sch_add_activity(6L, "a6" , 5L, 7) %>%
sch_add_activity(7L, "a7" , 1L, 8,11) %>%
sch_add_activity(8L, "a8" , 7L, 12) %>%
sch_add_activity(9L, "a9" , 8L, 12) %>%
sch_add_activity(10L, "a10", 3L, 12) %>%
sch_add_activity(11L, "a11", 3L, 12) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_critical_activities(sch)

sch_critical_relations

Critical Relations

Description

Return a tibble with critical relations of a schedule in topological order.

Usage

sch_critical_relations(sch, order = "topological")

28 sch_critical_relations

Arguments

sch A schedule object.

order Indicates the order of relations:

• "topological": The relations tibble is in topological order.
• "insert": The relations tibble is in insert order.

Value

A tibble with critical relations.

See Also

sch_relations(), sch_add_activities(), sch_has_any_relation(), sch_topoi_tf(), sch_gantt_matrix(),
sch_activities(), sch_topoi_la(), sch_add_relations(), sch_topoi_sp(), sch_non_critical_activities(),
sch_topoi_ad(), sch_nr_relations(), sch_non_critical_relations().

Examples

sch <- sch_new() %>%
sch_title("Project 3: Old Carriage House Renovation") %>%
sch_reference(
"VANHOUCKE, Mario. Integrated project management and control:

first comes the theory, then the practice. Gent: Springer, 2014, p. 11") %>%
sch_add_activity(1L, "a1" , 2L) %>%
sch_add_activity(2L, "a2" , 2L) %>%
sch_add_activity(3L, "a3" , 4L) %>%
sch_add_activity(4L, "a4" , 3L) %>%
sch_add_activity(5L, "a5" , 4L) %>%
sch_add_activity(6L, "a6" , 1L) %>%
sch_add_activity(7L, "a7" , 1L) %>%
sch_add_activity(8L, "a8" , 1L) %>%
sch_add_activity(9L, "a9" , 1L) %>%
sch_add_activity(10L, "a10", 1L) %>%
sch_add_activity(11L, "a11", 3L) %>%
sch_add_activity(12L, "a12", 2L) %>%
sch_add_activity(13L, "a13", 1L) %>%
sch_add_activity(14L, "a14", 1L) %>%
sch_add_activity(15L, "a15", 2L) %>%
sch_add_activity(16L, "a16", 1L) %>%
sch_add_activity(17L, "a17", 1L) %>%
sch_add_relation(14L, 15L) %>%
sch_add_relation(9L, 10L) %>%
sch_add_relation(2L, 3L) %>%
sch_add_relation(8L, 10L) %>%
sch_add_relation(10L, 13L) %>%
sch_add_relation(5L, 6L) %>%
sch_add_relation(11L, 12L) %>%
sch_add_relation(15L, 16L) %>%
sch_add_relation(6L, 8L) %>%
sch_add_relation(3L, 4L) %>%
sch_add_relation(16L, 17L) %>%

sch_duration 29

sch_add_relation(6L, 7L) %>%
sch_add_relation(10L, 11L) %>%
sch_add_relation(13L, 14L) %>%
sch_add_relation(4L, 5L) %>%
sch_add_relation(7L, 10L) %>%
sch_add_relation(12L, 15L) %>%
sch_add_relation(6L, 9L) %>%
sch_add_relation(1L, 2L) %>%
sch_plan()

In "topological" order.
sch_critical_relations(sch)
In "insert" order.
sch_critical_relations(sch, order = "insert")

sch_duration Duration

Description

An integer value that indicates the duration of a schedule. Atention: the schedule must be planned
with the function sch_plan().

Usage

sch_duration(sch)

Arguments

sch A schedule object.

Value

The duration of the schedule.

See Also

sch_change_activities_duration(), sch_validate(), sch_add_activities(), sch_reference(),
sch_add_relations(), sch_title(), sch_gantt_matrix(), sch_plan(), sch_new().

Examples

sch <- sch_new() %>%
sch_add_activities(
id = c(1L, 2L, 3L, 4L),
name = c("A", "B", "C", "D"),
duration = c(3L, 4L, 9L, 1L)

) %>%
sch_add_relations(

from = c(1L, 2L, 2L),

30 sch_evaluate_redundancy

to = c(2L, 3L, 4L)
) %>%
sch_plan()

sch_duration(sch) # 16

sch_evaluate_redundancy

Evaluate Redundancy

Description

Evaluates redundancy of each relation and creates another column in relation tibble. If the schedule
does not have any relation, this function do nothing.

Usage

sch_evaluate_redundancy(sch)

Arguments

sch Object Schedule

Value

Object Schedule redundancy column added. Or the Schedule without any modification, is trere is
no relation in it.

Examples

atb <- tibble::tibble(
id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L)

)
rtb <- data.frame(

from = c(1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 11L, 12L, 12L, 13L, 13L, 14L, 14L, 15L, 15L),

to = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 11L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 16L, 17L, 16L, 17L)

)
sch <- sch_new() %>%

sch_title("Project 1: Cost Information System") %>%
sch_reference("VANHOUCKE, Mario.

Integrated project management and control:
first comes the theory, then the practice.
Gent: Springer, 2014, p. 6") %>%

sch_add_activities_tibble(atb) %>%
sch_add_relations_tibble(rtb) %>%

sch_gantt_matrix 31

sch_plan() %>%
sch_evaluate_redundancy()

sch_duration(sch) # 11L

rtb <- sch_relations(sch)
sum(rtb$redundant) # 0

sch1 <- sch %>%
sch_add_relation(1L, 6L) %>%
sch_add_relation(3L, 16L) %>%
sch_add_relation(4L, 17L) %>%
sch_plan() %>%
sch_evaluate_redundancy()

sch_duration(sch) # 11L

rtb <- sch_relations(sch1)
sum(rtb$redundant) # 3L

sch_gantt_matrix Gantt Matrix

Description

Create a matrix that represents a Gantt chart, a matrix where "1" indicates that an activity is planned
to be in execution. Atention: the schedule must be planned with the function sch_plan().

Usage

sch_gantt_matrix(sch)

Arguments

sch A schedule object.

Details

In this matrix, the rows represent activities, whereas the columns represents the activity execution
period. So, the number of columns is equal to project duration. The cells is an integer value that
indicates the activity is in execution or not.

Value

A matrix where 1 indicates that an activity is in execution and 0, the activity is not executing.

32 sch_get_activity

See Also

sch_add_activities(), sch_activities(), sch_add_relations(), sch_add_relation(), sch_relations(),
sch_plan(), sch_xy_gantt_matrix().

Examples

sch <- sch_new() %>%
sch_add_activities(
id = c(1L, 2L, 3L, 4L),
name = c("A", "B", "C", "D"),
duration = c(2L, 3L, 1L, 2L)

) %>%
sch_add_relations(

from = c(1L, 2L, 4L, 4L),
to = c(3L, 3L, 1L, 2L)

) %>%
sch_plan()

sch_duration(sch)
gantt <- sch_gantt_matrix(sch)
gantt

What is the effort by time period?
colSums(gantt) # 1 1 2 2 1 1

What is the duration by activities?
rowSums(gantt) # 2 3 1 2

what is the S curve
cumsum(colSums(gantt))
plot(cumsum(colSums(gantt)), type="l", lwd=3)

sch_get_activity Get Activity

Description

Gets an activity by id.

Usage

sch_get_activity(sch, aid)

Arguments

sch A schedule object.

aid An activity id as defined by the user.

sch_has_any_activity 33

Value

A an activity information in a tibble with one line, or an error if activity id doesn’t exist.

See Also

sch_activities(), sch_duration(), sch_nr_activities(), sch_add_activities(), sch_critical_activities(),
sch_has_any_activity(), sch_change_activities_duration(), sch_add_activity().

Examples

sch <- sch_new() %>%
sch_add_activities(
id = 1:17,
name = paste("a", as.character(1:17), sep=""),
duration = c(1L,2L,2L,4L,3L,3L,3L,2L,1L,1L,2L,1L,1L,1L,1L,2L,1L)

) %>%
sch_plan()

sch_get_activity(sch, 7)

sch_has_any_activity Has Any Activity

Description

A logical value that indicates if the schedule has any activity. A TRUE value means that the schedule
has any activity; a FALSE, means that the schedule do not have any activity.

Usage

sch_has_any_activity(sch)

Arguments

sch A schedule object.

Value

A logical value:

• TRUE: The schedule has any activity;

• FALSE: The schedule do not have any activity.

See Also

sch_nr_activities(), sch_critical_activities(), sch_add_activities(), sch_change_activities_duration(),
sch_activities(), sch_nr_relations(), sch_has_any_relation(), sch_add_activity().

34 sch_has_any_relation

Examples

sch <- sch_new()
sch_has_any_activity(sch) # FALSE

sch <- sch_new() %>%
sch_add_activity(1L, "Only one", 0L) %>%
sch_plan()

sch_has_any_activity(sch) # TRUE

sch_has_any_relation Has Any Relation

Description

A logical value that indicates if the schedule has any relation. A TRUE value means that the sched-
ule has some relation; a FALSE, means that the schedule do not have any relation.

Usage

sch_has_any_relation(sch)

Arguments

sch A schedule object.

Value

A logical value:

• TRUE: The schedule has any relation;

• FALSE: The schedule do not have any relation.

See Also

sch_topoi_la(), sch_relations(), sch_add_relations(), sch_topoi_sp(), sch_has_any_activity(),
sch_all_predecessors(), sch_topoi_ad(), sch_nr_relations(), sch_all_successors(), sch_nr_activities(),
sch_topoi_tf().

Examples

sch <- sch_new()
sch_has_any_relation(sch) # FALSE

sch <- sch_new() %>%
sch_add_activity(1L, "A", 2L) %>%
sch_add_activity(2L, "B", 5L, 1L, direction = "pred")

sch_has_any_activity(sch) # TRUE

sch_is_redundant 35

sch_is_redundant Is Redundant

Description

Verify if a relation between two activities is redundant. A relation A->C is redundant if there are
A->C, A->B, B->C relations.

Usage

sch_is_redundant(sch, id_from, id_to)

Arguments

sch A schedule object.
id_from From activity id.
id_to To activity id.

Value

A logical TRUE if an arc is redundant; FALSE if it is not.

See Also

sch_all_predecessors(), sch_all_successors(), sch_gantt_matrix(), sch_relations(),
sch_predecessors(), sch_successors(), sch_activities().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(2L, "a2" , 4L, 5L, 12L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_is_redundant(sch, 2, 5) # FALSE
sch_is_redundant(sch, 2, 12) # TRUE

36 sch_non_critical_activities

sch_new New Schedule

Description

Create a new schedule without any information. The new schedule contains the structure to include
activities and relations.

Usage

sch_new()

Value

A list with schedule definition.

See Also

sch_reference(), sch_add_activities(), sch_duration(), sch_xy_gantt_matrix(), sch_plan(),
sch_add_relations(), sch_validate(), sch_non_critical_activities(), sch_title().

Examples

sch <- sch_new() %>%
sch_add_activities(
id = c(1L, 2L, 3L, 4L),
name = c("A", "B", "C", "D"),
duration = c(3L, 4L, 9L, 1L)

) %>%
sch_add_relations(

from = c(1L, 2L, 2L),
to = c(2L, 3L, 4L)

) %>%
sch_plan()

sch_duration(sch) # 16

sch_non_critical_activities

Non Critical Activities

Description

Return a tibble with all non critical activities of a schedule in an insertion order.

Usage

sch_non_critical_activities(sch)

sch_non_critical_relations 37

Arguments

sch A schedule object.

Value

A tibble with non critical activities.

See Also

sch_get_activity(), sch_add_activity(), sch_activities(), sch_critical_activities(),
sch_has_any_activity(), sch_nr_activities(), sch_add_activities().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(1L, "a1" , 0L, 2,3,4) %>%
sch_add_activity(2L, "a2" , 4L, 5) %>%
sch_add_activity(3L, "a3" , 9L, 10) %>%
sch_add_activity(4L, "a4" , 1L, 6) %>%
sch_add_activity(5L, "a5" , 4L, 9) %>%
sch_add_activity(6L, "a6" , 5L, 7) %>%
sch_add_activity(7L, "a7" , 1L, 8,11) %>%
sch_add_activity(8L, "a8" , 7L, 12) %>%
sch_add_activity(9L, "a9" , 8L, 12) %>%
sch_add_activity(10L, "a10", 3L, 12) %>%
sch_add_activity(11L, "a11", 3L, 12) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_non_critical_activities(sch)

sch_non_critical_relations

Non Critical Relations

Description

Return a tibble with non critical relations of a schedule in topological order.

Usage

sch_non_critical_relations(sch, order = "topological")

38 sch_non_critical_relations

Arguments

sch A schedule object.

order Indicates the order of relations:

• "topological": The relations tibble is in topological order.
• "insert": The relations tibble is in insert order.

Value

A tibble with non critical relations.

See Also

sch_relations(), sch_add_activities(), sch_has_any_relation(), sch_topoi_tf(), sch_gantt_matrix(),
sch_activities(), sch_topoi_la(), sch_add_relations(), sch_topoi_sp(), sch_non_critical_activities(),
sch_topoi_ad(), sch_nr_relations(), sch_critical_relations().

Examples

sch <- sch_new() %>%
sch_title("Project 3: Old Carriage House Renovation") %>%
sch_reference(
"VANHOUCKE, Mario. Integrated project management and control:

first comes the theory, then the practice. Gent: Springer, 2014, p. 11") %>%
sch_add_activity(1L, "a1" , 2L) %>%
sch_add_activity(2L, "a2" , 2L) %>%
sch_add_activity(3L, "a3" , 4L) %>%
sch_add_activity(4L, "a4" , 3L) %>%
sch_add_activity(5L, "a5" , 4L) %>%
sch_add_activity(6L, "a6" , 1L) %>%
sch_add_activity(7L, "a7" , 1L) %>%
sch_add_activity(8L, "a8" , 1L) %>%
sch_add_activity(9L, "a9" , 1L) %>%
sch_add_activity(10L, "a10", 1L) %>%
sch_add_activity(11L, "a11", 3L) %>%
sch_add_activity(12L, "a12", 2L) %>%
sch_add_activity(13L, "a13", 1L) %>%
sch_add_activity(14L, "a14", 1L) %>%
sch_add_activity(15L, "a15", 2L) %>%
sch_add_activity(16L, "a16", 1L) %>%
sch_add_activity(17L, "a17", 1L) %>%
sch_add_relation(14L, 15L) %>%
sch_add_relation(9L, 10L) %>%
sch_add_relation(2L, 3L) %>%
sch_add_relation(8L, 10L) %>%
sch_add_relation(10L, 13L) %>%
sch_add_relation(5L, 6L) %>%
sch_add_relation(11L, 12L) %>%
sch_add_relation(15L, 16L) %>%
sch_add_relation(6L, 8L) %>%
sch_add_relation(3L, 4L) %>%
sch_add_relation(16L, 17L) %>%

sch_nr_activities 39

sch_add_relation(6L, 7L) %>%
sch_add_relation(10L, 11L) %>%
sch_add_relation(13L, 14L) %>%
sch_add_relation(4L, 5L) %>%
sch_add_relation(7L, 10L) %>%
sch_add_relation(12L, 15L) %>%
sch_add_relation(6L, 9L) %>%
sch_add_relation(1L, 2L) %>%
sch_plan()

In "topological" order.
sch_non_critical_relations(sch)
In "insert" order.
sch_non_critical_relations(sch, order = "insert")

sch_nr_activities Nr. of Activities

Description

Number of activities in a schedule as an integer value.

Usage

sch_nr_activities(sch)

Arguments

sch A schedule object.

Value

A integer value indicating the number of activities.

See Also

sch_add_activity(), sch_nr_relations(), sch_add_activities(), sch_activities(), sch_change_activities_duration(),
sch_critical_activities(), sch_get_activity(), sch_has_any_relation().

Examples

sch <- sch_new()
sch_nr_activities(sch) # 0

sch <- sch_new() %>%
sch_add_activity(1L, "Only one", 0L) %>%
sch_plan()

sch_nr_activities(sch) # 1

40 sch_nr_relations

sch_nr_relations Nr. of Relations

Description

Number of relations in a schedule as an integer value.

Usage

sch_nr_relations(sch)

Arguments

sch A schedule object.

Value

A integer value indicating the number of relations.

See Also

sch_relations(), sch_topoi_la(), sch_topoi_tf(), sch_all_successors(), sch_topoi_ad(),
sch_nr_activities(), sch_topoi_sp(), sch_has_any_relation(), sch_all_predecessors(),
sch_add_relations(), sch_has_any_activity().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(1L, "a1" , 0L, 2,3,4) %>%
sch_add_activity(2L, "a2" , 4L, 5) %>%
sch_add_activity(3L, "a3" , 9L, 10) %>%
sch_add_activity(4L, "a4" , 1L, 6) %>%
sch_add_activity(5L, "a5" , 4L, 9) %>%
sch_add_activity(6L, "a6" , 5L, 7) %>%
sch_add_activity(7L, "a7" , 1L, 8,11) %>%
sch_add_activity(8L, "a8" , 7L, 12) %>%
sch_add_activity(9L, "a9" , 8L, 12) %>%
sch_add_activity(10L, "a10", 3L, 12) %>%
sch_add_activity(11L, "a11", 3L, 12) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_nr_relations(sch) # 14

sch_plan 41

sch_plan Plan Schedule

Description

Perform schedule plan: execute topological sort and critical path calculation. All information about
critical path are calculated.

Usage

sch_plan(sch)

Arguments

sch A schedule object.

Value

A schedule with critical path calculated.

See Also

sch_gantt_matrix(), sch_duration(), sch_reference(), sch_add_activities(), sch_has_any_activity(),
sch_title(), sch_new(), sch_add_relations().

Examples

sch <- sch_new() %>%
sch_add_activities(
id = c(1L, 2L, 3L, 4L),
name = c("A", "B", "C", "D"),
duration = c(3L, 4L, 9L, 1L)

) %>%
sch_add_relations(

from = c(1L, 2L, 2L),
to = c(2L, 3L, 4L)

) %>%
sch_plan()

sch_duration(sch) # 16

42 sch_predecessors

sch_predecessors Predecessors

Description

List the direct predecessors of an activity.

Usage

sch_predecessors(sch, id)

Arguments

sch A schedule object.

id Activity id to be listed.

Value

A vector with all activities ids.

See Also

sch_gantt_matrix(), sch_all_successors(), sch_is_redundant(), sch_all_predecessors(),
sch_successors(), sch_activities(), sch_relations().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(2L, "a2" , 4L, 5L, 12L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_predecessors(sch, 2) # nothing
sch_predecessors(sch, 7) # 6
sch_predecessors(sch, 10) # 3

sch_reference 43

sch_reference Reference

Description

A reference from project origin, for example, a book, a paper, a corporation, or nothing.

Usage

sch_reference(sch, new_value = NULL)

Arguments

sch A schedule object.

new_value A new reference.

Value

• A schedule object with new reference.

• A reference.

See Also

sch_new(), sch_activities(), sch_relations(), sch_title(), sch_plan(), sch_duration(),
sch_validate().

Examples

sch <- sch_new() %>%
sch_add_activities(
id = c(1L, 2L, 3L, 4L),
name = c("A", "B", "C", "D"),
duration = c(3L, 4L, 9L, 1L)

) %>%
sch_add_relations(

from = c(1L, 2L, 2L),
to = c(2L, 3L, 4L)

) %>%
sch_plan()

sch_reference(sch) # empty
sch %<>% sch_reference("This schedule is from...")
sch_reference(sch)

44 sch_relations

sch_relations Relations

Description

Return a tibble with all relations of a schedule in topological order. These are the main information
calculated by CPM.

Usage

sch_relations(sch, order = "topological")

Arguments

sch A schedule object.

order Indicates the order of relations:

• "topological": The relations tibble is in topological order.
• "insert": The relations tibble is in insert order.

Details

The tibble is formed by following structure:

• from: Predecessor activity id from a relation.

• to: Successor activity id to a relation.

• type: The type of relation between activities. Its value may be: FS, FF, SS, SF.

• lag: The time period between activity predecessor and activity successor activity

• critical: A critical relation is formed by two activity critical: predecessor and successor. TRUE
indicates it is critical; FALSE indicates it is not critical.

• ord: Indicates de order that the relation was added in the schedule.

• i_from: It is the index of predecessor activity in the activities tibble.

• i_to: It is the index of successor activity in the activities tibble.

Value

A tibble with relations.

See Also

sch_add_activities(), sch_has_any_relation(), sch_topoi_tf(), sch_gantt_matrix(), sch_activities(),
sch_add_relations(), sch_topoi_sp(), sch_topoi_la(), sch_non_critical_activities(),
sch_topoi_ad(), sch_nr_relations().

sch_successors 45

Examples

sch <- sch_new() %>%
sch_title("Project 3: Old Carriage House Renovation") %>%
sch_reference(
"VANHOUCKE, Mario. Integrated project management and control:

first comes the theory, then the practice. Gent: Springer, 2014, p. 11") %>%
sch_add_activity(1L, "a1" , 2L) %>%
sch_add_activity(2L, "a2" , 2L) %>%
sch_add_activity(3L, "a3" , 4L) %>%
sch_add_activity(4L, "a4" , 3L) %>%
sch_add_activity(5L, "a5" , 4L) %>%
sch_add_activity(6L, "a6" , 1L) %>%
sch_add_activity(7L, "a7" , 1L) %>%
sch_add_activity(8L, "a8" , 1L) %>%
sch_add_activity(9L, "a9" , 1L) %>%
sch_add_activity(10L, "a10", 1L) %>%
sch_add_activity(11L, "a11", 3L) %>%
sch_add_activity(12L, "a12", 2L) %>%
sch_add_activity(13L, "a13", 1L) %>%
sch_add_activity(14L, "a14", 1L) %>%
sch_add_activity(15L, "a15", 2L) %>%
sch_add_activity(16L, "a16", 1L) %>%
sch_add_activity(17L, "a17", 1L) %>%
sch_add_relation(14L, 15L) %>%
sch_add_relation(9L, 10L) %>%
sch_add_relation(2L, 3L) %>%
sch_add_relation(8L, 10L) %>%
sch_add_relation(10L, 13L) %>%
sch_add_relation(5L, 6L) %>%
sch_add_relation(11L, 12L) %>%
sch_add_relation(15L, 16L) %>%
sch_add_relation(6L, 8L) %>%
sch_add_relation(3L, 4L) %>%
sch_add_relation(16L, 17L) %>%
sch_add_relation(6L, 7L) %>%
sch_add_relation(10L, 11L) %>%
sch_add_relation(13L, 14L) %>%
sch_add_relation(4L, 5L) %>%
sch_add_relation(7L, 10L) %>%
sch_add_relation(12L, 15L) %>%
sch_add_relation(6L, 9L) %>%
sch_add_relation(1L, 2L) %>%
sch_plan()

In "topological" order.
sch_relations(sch)
In "insert" order.
sch_relations(sch, order = "insert")

sch_successors Successors

46 sch_successors

Description

List the direct successors from an activity.

Usage

sch_successors(sch, id)

Arguments

sch A schedule object.

id Activity id to be listed.

Value

A vector with all activities ids.

See Also

sch_relations(), sch_all_predecessors(), sch_activities(), sch_gantt_matrix(), sch_predecessors(),
sch_is_redundant(), sch_all_successors().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(2L, "a2" , 4L, 5L, 12L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_successors(sch, 2) # 5, 12
sch_successors(sch, 7) # 8, 11
sch_successors(sch, 10) # 12

sch_title 47

sch_title Title

Description

A title for project identification. It depends on user of the class. It is used to set or get project’s title.

Usage

sch_title(sch, new_value)

Arguments

sch A schedule object.

new_value A new title.

Value

• A schedule object with new title.

• A title.

See Also

sch_relations(), sch_plan(), sch_new(), sch_validate(), sch_activities(), sch_reference(),
sch_duration().

Examples

sch <- sch_new() %>%
sch_add_activities(
id = c(1L, 2L, 3L, 4L),
name = c("A", "B", "C", "D"),
duration = c(3L, 4L, 9L, 1L)

) %>%
sch_add_relations(

from = c(1L, 2L, 2L),
to = c(2L, 3L, 4L)

) %>%
sch_plan()

sch_title(sch) # empty
sch %<>% sch_title("New title")
sch_title(sch)

48 sch_topoi_ad

sch_topoi_ad AD Activity Distribution Topological Indicator

Description

Measures the distribution of the activities over the levels. If AD is approximately equal zero, each
level has same numbers of activities. Otherwise, if AD is equal one, the quantity of each level is not
uniformly distributed.

Usage

sch_topoi_ad(sch)

Arguments

sch A schedule object.

Value

A number between 0 and 1, inclusive.

See Also

sch_topoi_sp(), sch_topoi_la(), sch_topoi_tf(), sch_xy_gantt_matrix(), sch_add_relations(),
sch_add_activities(), sch_relations(), sch_activities().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(1L, "a1" , 0L, 2L,3L,4L) %>%
sch_add_activity(2L, "a2" , 4L, 5L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_topoi_ad(sch) # 0.4

sch_topoi_la 49

sch_topoi_la LA Length of Arcs Topological Indicator

Description

Measures the presence of long arcs based on the difference between the progressive level of the end
activity and the start node of each relation. If LA is approximately equal zero, the progressive level
between activities is as far as possible. Otherwise, if LA is equal one, the relation distance are one.

Usage

sch_topoi_la(sch)

Arguments

sch A schedule object.

Value

A number between 0 and 1, inclusive.

See Also

sch_topoi_sp(), sch_add_relations(), sch_topoi_ad(), sch_relations(), sch_xy_gantt_matrix(),
sch_activities(), sch_topoi_tf(), sch_add_activities().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(1L, "a1" , 0L, 2L,3L,4L) %>%
sch_add_activity(2L, "a2" , 4L, 5L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_topoi_la(sch) # 0.07692308

50 sch_topoi_sp

sch_topoi_sp SP Serial or Parallel Topological Indicator

Description

Shows the closeness of a network to a serial or parallel graph. As the network becomes serial, the
SP increase, until one; As the network becomes parallel, the SP decrease until zero.

Usage

sch_topoi_sp(sch)

Arguments

sch A schedule object.

Value

A number between 0 and 1, inclusive.

See Also

sch_topoi_tf(), sch_activities(), sch_topoi_ad(), sch_xy_gantt_matrix(), sch_relations(),
sch_topoi_la(), sch_add_activities(), sch_add_relations().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(1L, "a1" , 0L, 2L,3L,4L) %>%
sch_add_activity(2L, "a2" , 4L, 5L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_topoi_sp(sch) # 0.4545455

sch_topoi_tf 51

sch_topoi_tf TF Topological Float Indicator

Description

Measures the topological float of each activity. If TF = 0, there is no float between activities. If TF
= 1, there is float between activities and they be shift without affecting other activities.

Usage

sch_topoi_tf(sch)

Arguments

sch A schedule object.

Value

A number between 0 and 1, inclusive.

See Also

sch_topoi_ad(), sch_add_activities(), sch_add_relations(), sch_xy_gantt_matrix(), sch_topoi_la(),
sch_activities(), sch_relations(), sch_topoi_sp().

Examples

sch <- sch_new() %>%
sch_title("Fictitious Project Example") %>%
sch_reference("VANHOUCKE, Mario. Measuring time:
improving project performance using earned value management.
Gent: Springer, 2009, p. 18") %>%
sch_add_activity(1L, "a1" , 0L, 2L,3L,4L) %>%
sch_add_activity(2L, "a2" , 4L, 5L) %>%
sch_add_activity(3L, "a3" , 9L, 10L) %>%
sch_add_activity(4L, "a4" , 1L, 6L) %>%
sch_add_activity(5L, "a5" , 4L, 9L) %>%
sch_add_activity(6L, "a6" , 5L, 7L) %>%
sch_add_activity(7L, "a7" , 1L, 8L,11L) %>%
sch_add_activity(8L, "a8" , 7L, 12L) %>%
sch_add_activity(9L, "a9" , 8L, 12L) %>%
sch_add_activity(10L, "a10", 3L, 12L) %>%
sch_add_activity(11L, "a11", 3L, 12L) %>%
sch_add_activity(12L, "a12", 0L) %>%
sch_plan()

sch_topoi_tf(sch) # 0.2333333

52 sch_validate

sch_validate Validate Schedule

Description

Validate your schedule in terms of structure: cannot have duplicated activity id, all ’from’ and ’to’
relation id must exist in activities tibble and cannot have duplicated relation. This function is called
by sch_plan(plan). If there is an error, the schedule cannot be calculated.

Usage

sch_validate(sch)

Arguments

sch A schedule object.

Details

There are two forms to use this function:

• The first is automatic, when you call sch_plan(plan), the validation is called for you.

• The second, you can call sch_plan(plan) with your schedule, before plan, to see all error in
your schedule.

In both way, the calculation schedule is stopped, because there is some error. To see the errors, you
call the sch_plan(plan) function to find how to correct the errors.

The result of sch_plan(plan) is a lista with a lot of information about the error. The structure is:

• is_valid: A logical value that indicates if the schedule structure is valid.

– TRUE: The schedule structure is NOT valid.
– FALSE: The schedule structure is valid.

• is_error_with_activities: A logical value that indicates if there is any error with activi-
ties.

– TRUE: There is any error with activities.
– FALSE: There is NOT any error with activities.

• is_error_with_relations: A logical value that indicates if there is any error with relations.

– TRUE: There is any error with relations.
– FALSE: There is NOT any error with relations.

• is_error_with_dag: A logical value that indicates if there is any error with igraph object
tha support the schedule.

– TRUE: There is any error with igraph.
– FALSE: There is NOT any error with igraph.

• activities_errors: A tibble that list the activities errors:

sch_xy_gantt_matrix 53

– id: activity’s id of the error

* error: the error.

* to_fix: suggestion of how to fix the error.

• relations_errors:

– from: Predecessor activity id ’from’ of the error.

* to: Successor activity id from a relation.

* error: the error.

* to_fix: suggestion of how to fix the error.

• dag_errors: Error identified by igraph object.

• dag_igraph: The igraph object that is totally validated.

Attention: You must identify and correct all errors before call sch_plan(plan)!

Value

A list object with a description of all error.

See Also

sch_add_relation(), sch_relations(), sch_add_relations(), sch_add_activities(), sch_add_activity(),
sch_activities(), sch_plan().

sch_xy_gantt_matrix XY Gantt Matrix

Description

Transform a Gantt matrix into x, y coordinates and the weight one. Each point greater than zero in a
Gantt matrix becomes a x, y coordinate. Atention: the schedule must be planned with the function
sch_plan().

Usage

sch_xy_gantt_matrix(sch, gantt = NULL)

Arguments

sch A schedule object.

gantt A Gantt Matrix. If it is not informed, it will use gantt_matrix() before this
function.

Value

A matrix with three columns: x, y and weight.

54 sch_xy_gantt_matrix

See Also

sch_relations(), sch_activities(), sch_add_activities(), sch_add_relations(), sch_add_relation(),
sch_plan(), sch_gantt_matrix().

Examples

sch <- sch_new() %>%
sch_add_activities(
id = c(1L, 2L, 3L, 4L),
name = c("A", "B", "C", "D"),
duration = c(2L, 3L, 1L, 2L)

) %>%
sch_add_relations(

from = c(1L, 2L, 4L, 4L),
to = c(3L, 3L, 1L, 2L)

) %>%
sch_plan()

sch_duration(sch)

xyw <- sch_xy_gantt_matrix(sch)
xyw
plot(xyw[, 1:2])

Index

criticalpath, 3, 12

sch_activities, 13
sch_activities(), 4, 23–25, 27, 28, 32, 33,

35, 37–39, 42–44, 46–51, 53, 54
sch_add_activities, 15
sch_add_activities(), 4, 14, 18, 19, 21, 25,

27–29, 32, 33, 36–39, 41, 44, 48–51,
53, 54

sch_add_activities_tibble, 17
sch_add_activity, 17
sch_add_activity(), 4, 14, 15, 25, 27, 33,

37, 39, 53
sch_add_relation, 19
sch_add_relation(), 4, 18, 21, 32, 53, 54
sch_add_relations, 20
sch_add_relations(), 4, 15, 19, 28, 29, 32,

34, 36, 38, 40, 41, 44, 48–51, 53, 54
sch_add_relations_tibble, 22
sch_all_predecessors, 23
sch_all_predecessors(), 5, 24, 34, 35, 40,

42, 46
sch_all_successors, 24
sch_all_successors(), 5, 23, 34, 35, 40, 42,

46
sch_change_activities_duration, 25
sch_change_activities_duration(), 5, 14,

15, 18, 29, 33, 39
sch_critical_activities, 26
sch_critical_activities(), 14, 33, 37, 39
sch_critical_relations, 27
sch_critical_relations(), 38
sch_duration, 29
sch_duration(), 4, 14, 25, 33, 36, 41, 43, 47
sch_evaluate_redundancy, 30
sch_gantt_matrix, 31
sch_gantt_matrix(), 4, 28, 29, 35, 38, 41,

42, 44, 46, 54
sch_get_activity, 32

sch_get_activity(), 4, 14, 15, 18, 25, 27,
37, 39

sch_has_any_activity, 33
sch_has_any_activity(), 14, 15, 18, 25, 27,

33, 34, 37, 40, 41
sch_has_any_relation, 34
sch_has_any_relation(), 19, 21, 28, 33,

38–40, 44
sch_is_redundant, 35
sch_is_redundant(), 23, 24, 42, 46
sch_new, 36
sch_new(), 4, 15, 18, 19, 21, 29, 41, 43, 47
sch_non_critical_activities, 36
sch_non_critical_activities(), 23, 24,

27, 28, 36, 38, 44
sch_non_critical_relations, 37
sch_non_critical_relations(), 28
sch_nr_activities, 39
sch_nr_activities(), 14, 15, 18, 25, 27, 33,

34, 37, 40
sch_nr_relations, 40
sch_nr_relations(), 19, 21, 28, 33, 34, 38,

39, 44
sch_plan, 41
sch_plan(), 15, 18, 19, 21, 29, 32, 36, 43, 47,

53, 54
sch_predecessors, 42
sch_predecessors(), 5, 23, 24, 35, 46
sch_reference, 43
sch_reference(), 4, 15, 21, 29, 36, 41, 47
sch_relations, 44
sch_relations(), 5, 23, 24, 28, 32, 34, 35,

38, 40, 42, 43, 46–51, 53, 54
sch_successors, 45
sch_successors(), 5, 23, 24, 35, 42
sch_title, 47
sch_title(), 4, 15, 21, 29, 36, 41, 43
sch_topoi_ad, 48
sch_topoi_ad(), 5, 28, 34, 38, 40, 44, 49–51

55

56 INDEX

sch_topoi_la, 49
sch_topoi_la(), 5, 28, 34, 38, 40, 44, 48, 50,

51
sch_topoi_sp, 50
sch_topoi_sp(), 5, 28, 34, 38, 40, 44, 48, 49,

51
sch_topoi_tf, 51
sch_topoi_tf(), 5, 28, 34, 38, 40, 44, 48–50
sch_validate, 52
sch_validate(), 19, 21, 29, 36, 43, 47
sch_xy_gantt_matrix, 53
sch_xy_gantt_matrix(), 4, 32, 36, 48–51
Schedule, 5
schedule (Schedule), 5

	criticalpath
	Schedule
	sch_activities
	sch_add_activities
	sch_add_activities_tibble
	sch_add_activity
	sch_add_relation
	sch_add_relations
	sch_add_relations_tibble
	sch_all_predecessors
	sch_all_successors
	sch_change_activities_duration
	sch_critical_activities
	sch_critical_relations
	sch_duration
	sch_evaluate_redundancy
	sch_gantt_matrix
	sch_get_activity
	sch_has_any_activity
	sch_has_any_relation
	sch_is_redundant
	sch_new
	sch_non_critical_activities
	sch_non_critical_relations
	sch_nr_activities
	sch_nr_relations
	sch_plan
	sch_predecessors
	sch_reference
	sch_relations
	sch_successors
	sch_title
	sch_topoi_ad
	sch_topoi_la
	sch_topoi_sp
	sch_topoi_tf
	sch_validate
	sch_xy_gantt_matrix
	Index

